QyScore® MRI markers diagnostic accuracy in the clinical spectrum of Alzheimer's Disease

Enrica Cavedo¹, Philippe Tran^{1,2}, Urielle Thoprakarn¹, Jean-Baptiste Martini¹, Jorge Samper-Gonzàlez¹, Antoine Movschin¹, Clarisse Longo dos Santos¹ and for the Alzheimer's Disease Neuroimaging Initiative

1 Qynapse, Paris France (https://www.qynapse.com/) 2 Equipe-projet ARAMIS, ICM, CNRS UMR 7225, Inserm U1117, Sorbonne Université UMR_S 1127, Centre Inria de Paris, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Faculté de Médecine Sorbonne Université, Paris, France

AAIC2021 – ePoster #51308, July 26-30, 2021

Disclosures: All authors are employees of Qynapse

INTRODUCTION BACKGROUND

In Alzheimer's disease (AD) the spread of neurodegeneration, especially tau pathology and synapse loss detectable by quantitative magnetic resonance (MR) techniques, is the most important pathological substrate of clinical symptoms¹

Diagnostic criteria for AD acknowledge the key role of imaging markers of medial temporal lobe structures, such as hippocampus and amygdala, for early diagnosis ^{2,3,4}

Non-invasive and automated MR brain imaging methods can support the quantitative characterization of AD, and its prodromal stages, increasing the objectivity in the disease assessment ⁵

Objectives

To assess the diagnostic accuracy of **QyScore®** medial temporal lobe atrophy markers in distinguishing AD dementia and Mild Cognitive Impairment (MCI) from cognitively healthy controls (HC) individuals

To assess the consistency of their diagnostic accuracy between two large open access datasets: ADNI and OASIS

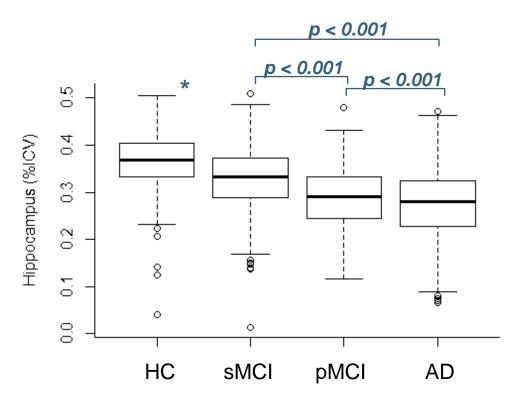
MATERIALS & METHODS

Data description: ADNI (1, 2, GO, 3) and OASIS datasets

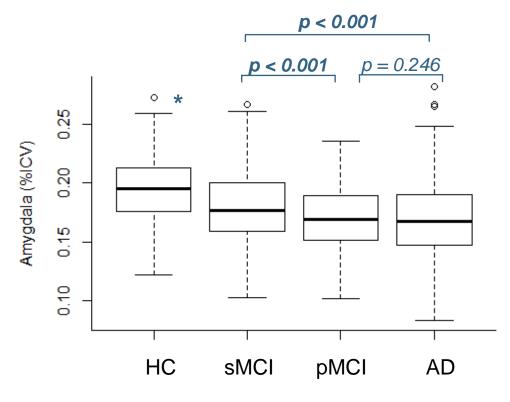
Total	НС	sMCI	рМСІ	AD	p-value	p-value post-hoc comparisons					
N = 2012	N = 643	N=583	N=319	N=467		HC vs sMCI	HC vs pMCI	HC vs AD	sMCI vs pMCI	sMCI vs AD	pMCI vs AD
Age	74±5	72±7.8	74±6.9	74±7.8	<.0001	<.0001	0.999	0.387	0.007	<.0001	0.645
Sex F/M (% F)	344 / 299 (54%)	240 / 343 (41%)	127 / 192 (39%)	221 / 246 (47%)	<.0001						
MMSE	29±1.1	27±1.7	27±1.7	23±2.7	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001
FAQ	1±3.3	2±3.2	5±4.8	13±7.6	<.0001	0.009	<.0001	<.0001	<.0001	<.0001	<.0001
APOE £4 carriers (n/%)	158 / 570 (27%)	230 / 550 (41%)	207 / 318 (65%)	295 / 456 (64%)	<.0001						

Values are reported in mean ± standard deviation for continuous variables or frequencies (percentage) for categorical variables;

Abbreviations: HC = cognitively healthy controls; sMCI = stable Mild Cognitive Impairment; AD = Alzheimer's Disease; F/M = Female/Male; MMSE = Mini-Mental Status Examination; FAQ = Functional Activities Questionnaire; APOE = ApolipoproteineE


Segmentation methods

- Hippocampus and Amygdala volumes segmented by QyScore[®]
- Volumes normalized by intracranial volume (%ICV)


Statistical analysis

- Chi-Square test for categorical variables
- For sociodemographic and clinical variables: ANOVA with post hoc Tukey's test
- For imaging variables: ANCOVA (Age, Sex, Datasets as covariates) with post hoc Tukey's test
- Area under the curves (AUCs) of receiver operating characteristics (ROC) curves were calculated for volumetric measurements

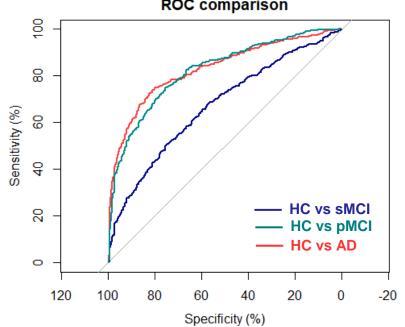
RESULTS

* HC volumes significantly differed from all other groups p < 0.001

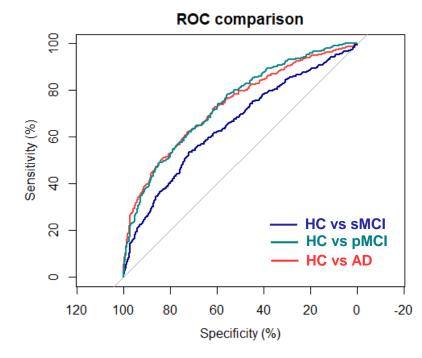
* HC volumes significantly differed from all other groups p < 0.001

Significant difference of hippocampal volumes among all groups

Amygdala volumes significantly differed among all groups, except between pMCI and AD



RESULTS


Hippocampal volume showed the highest diagnostic accuracy in discriminating AD dementia patients and pMCI from HC

Both markers show consistent results between ADNI and OASIS datasets

Hippocampus ROC comparison

Amygdala

HC vs AD

		AUC 95% CI	AUC	AUC 95% CI	AUC	AUC 95% CI	AUC
	Whole Sample	0.640-0.699	0.669	0.793-0.850	0.821	0.804-0.854	0.828
Hippocampus	ADNI	0.591-0.658	0.623	0.755-0.820	0.789	0.81-0.877	0.849
	OASIS	0.426-0.793	0.612	0.507-0.963	0.775	0.733-0.837	0.787
	Whole Sample	0.621-0.683	0.652	0.793-0.850	0.741	0.704-0.765	0.735
Amygdala	ADNI	0.573-0.641	0.606	0.658-0.733	0.696	0.710-0.780	0.745
	OASIS	0.354-0.755	0.553	0.669-0.919	0.797	0.657-0.769	0.715

HC vs pMCI

HC vs sMCI

CONCLUSIONS

Our results suggest that Hippocampus volumes accurately discriminated between clinical diagnostic groups associated with AD dementia (HC vs AD, HC vs pMCI)

Results are consistent between cohorts suggesting a good stability of the diagnostic performance of QyScore® markers

Hippocampus and Amygdala volumes measured with a fully automated tool (**QyScore**®) support the diagnostic work-up of AD, particularly in distinguishing HC vs AD, and HC vs pMCI

Those MRI markers could therefore be used to define the clinical spectrum of AD more accurately, and to track the clinical progression of the disease

