AUTOMATED MRI LESION ANALYSIS AND REPORTING AS A COMPUTER-ASSISTED RADIOLOGY TOOL FOR DETERMINATION OF MCDONALD CRITERIA

Philippe Tran¹, Enrica Cavedo¹, Clarisse Longo dos Santos¹, Elizabeth Gordon¹, Hanthony Biancotto¹, Urielle Thoprakarn², François Cotton³, Marie Chupin², Adam J Schwarz⁴

¹Qynapse, Paris, France ²CATI, Paris, France ³Service de Radiologie, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre-Bénite, France ⁴Qynapse, Boston MA, USA

BACKGROUND

- Dissemination in space (DIS) and time (DIT) are core components of the 2017 revised **McDonald criteria**, the current diagnostic standard of Multiple Sclerosis
- Regulatory-approved automated methods to quantify, count and localize the lesions could reduce the time and cost of radiological review, performed visually by trained neuroradiologists and decrease the variability in MRI lesion quantification in clinical practice

OBJECTIVES

To demonstrate:

- 1. Reliable white matter lesion quantification, in comparison with manual tracing and six other state-of-the-art automated methods, of an automated 3D T2-FLAIR segmentation method (WHASA-3D) [1]
- 2. How **QyScore® automated reports** can inform the DIS and DIT radiological components of the 2017 revised McDonald criteria

MATERIALS & METHODS								
IMAGING DATA								
Database	MRI sequences Scanner (n)	Clinical status	Age (mean +/- SD)	Sex proportion (F : M)	Manual segmentation			
LITMS [2]	2D-T1, 3D-FLAIR Siemens TrioTim 3T (30)	24 RRMS, 2 SPMS, 1 PPMS, 2 CIS, 1 unspecified	39 +/- 10	23:7	3 experts to form consensus			
MICCAI 2016 [3]	3D-T1, 3D-FLAIR Siemens Verio 3T (5)		35 +/- 10	1:4	7 experts to form consensus			
	3D-T1, 3D-FLAIR Philips Ingenia 3T (5)	IVIS	46 +/- 9	4 : 1				

- WHASA-3D METHOD & PERFORMANCE ASSESSMENT

- WHASA-3D is based on non-linear diffusion filtering and watershed segmentation to increase contrast between white matter hyperintensities (WMH) and surrounding tissues, followed by a subject-specific selection based on intensity and location characteristics
- This algorithm is included in **QyScore**[®], an FDA-cleared and CE-marked computer-assisted radiology software that provides a fully automated volumetric measurement of brain structures and WMH quantification
- Performance was assessed in comparison with consensus and with six other state-of-the-art automated WMH segmentation methods: LST-LGA [4], LST-LPA [5], Lesion-TOADS [6], lesionBrain [7], BIANCA [8] and nicMSlesions [9] with **Absolute Volume Error** (AVE in mL) and **Dice** score on the LITMS dataset
- WMH segmented volumes and Relative Volume Error from WHASA-3D were also computed for each expert and consensus from the MICCAI2016 dataset to assess the inter-rater variability

2 - QYSCORE[®] MS REPORT

- Volumetric measures of the brain and substructures in comparison to a large normative database of cognitively healthy individuals
- **Spatial localization** of WMH (periventricular, juxtacortical, infratentorial and deep white matter lesions)
- Visualization of **WMH longitudinal** changes (increased, decreased or static)

RESULTS

1 – WHASA-3D RESULTS

detected by WHASA-3D but either missed or underestimated by other methods.

The table shows Dice scores (spatial overlap) and AVE in the comparison among WHASA-3D and all the other methods with default parameters [1] **p-value < 0.001 Wilcoxon tests

	QyScore [®] WHASA-3D	LST-LGA	LST-LPA	lesionBrain	Lesion- TOADS	BIANCA	nicMSlesions
Median							
Dice	0.66	0.41**	0.49**	0.45**	0.43**	0.24**	0.19**
AVE (mL)	1.9	7.9**	7.9**	7.0**	4.3**	11.4**	17.5**

The Figure below displays the **Inter-rater variability reduction** with WHASA-3D relative to human raters. This study was performed on 10 cases from the MICCAI2016 dataset. Individual manual segmentation from 7 experts and combined consensus were used as comparison. The WHASA-3D segmentation is less variable than human raters across raters and cases.

The Figure shows an example MS 3D T2-FLAIR image and superposed segmentations from the consensus reference (LITMS data), WHASA-3D and the six comparator state-of-the-art methods with their default settings. Yellow arrows shows areas of WMH that are correctly

$2 - QYSCORE^{\circ}$ MS REPORT

6	হ) PAT		REPOR	ЯТ			
	PATIENT ID)		SEX			
	OFSEP_16_2	2		F			
sι	JMMARY		S	ome data displayed	in this r		
	The total volume of White Matter Hyperintensities is 12.47 mL, distributed in comparison to the MRI scan acquired on 23-08-2017 there is a 13.2 as follows: 0.33mL volume increase in periventricular, 0.21mL volume 1.43mL volume increase in deep.						
	The total volume of T1 Hypointensities is 1.61 mL. In comparison to the MRI scan acquired on 23-08-2017 there is a 213						
				WM ABN	ORM		
R	Periven	tricular WMH	Deep	WMH 😑 J	uxtac		
WM ABNORMALITIES OVERV	12 - 10 - 8 - 8 - 6 - 7 - 2 - 0	0.83	11.01 31 7.08 23-04	0.52 3-2017			
		PERIVE	NT. JU	XTACOR	г.		
	WMH VOLUME	0.48%ICV (7.2	20 ML) 0.1	12%ICV (1.86 ML	_)		
	T1 HYPO VOLUME	-		-			
			мног	E BRAIN			
MES	VOLUME		82.07 %ICV (1226.89 ML)				
	VOLUME NORMAL	RANGE*	82.07 71.12 (5%) 87.89 (85%)				
RAIN	Z-SCORE			-0.38			
8	PERCENTILE		50 - 75				
	VOLUME CHANGE*	•	0.53%				

Figure: QyScore[®] MS report

CONCLUSION

[1] Tran, P. et al. (2022) [2] Lesjak, Ž. et al. (2018) [3] Commowick, 0. et al. (2021)

• Automated segmentation of WMH according to their spatial **localization**

• Visualization of WMH **longitudinal changes**

• The availability of reliable, automated algorithms and reporting tools for the assessment of DIS and DIT could facilitate and increase confidence in the diagnosis and monitoring of MS patients' status and evolution

Future work will assess the utility of these tools in clinical practice

[4] Schmidt, P. et al. (2012) [5] Schmidt, P. (2017) [6] Shiee, N. et al. (2010)

[7] Coupé, P. et al. (2018) [8] Griffanti, L. et al. (2016) [9] Valverde, S. et al. (2019)