QYNAPSE

QYPREDICT® PROGNOSTIC MODEL ENRICHES FOR FASTER DECLINERS IN MILD COGNITIVE IMPAIRMENT

Jorge Samper-Gonzalez, Elizabeth Gordon, Enrica Cavedo, Clarisse Longo dos Santos, Adam J. Schwarz

Qynapse

PARIS, FRANCE & BOSTON, USA

QYNAPSE QYPREDICT®

DISCLOSURES

	Nothing to disclose
X	Yes, please specify

Company	Honoraria /	Consulting /	Funded	Royalties /	Stock	Ownership /	Employee	Other
Name	Expense	Advisory Board	Research	Patent	Options	Equity Position		(Please specify)
Qynapse							X	

Background

Key Challenges:

- Many patients enrolled in clinical trials for Alzheimer's Disease (AD) interventions do not progress clinically over the study period, reducing the power to detect positive treatment effects.
- The increased heterogeneity and slower decline in mild cognitive impairment (MCI) pose even greater challenges but this stage is a better window to target intervention.
- The suboptimal selection of patients has been a key contributor to the reduced success rate of disease-modifying trials and improvements in selection strategy are urgently needed to better power clinical trials.

New Approaches:

• Recent advances in AI predictive modeling, such as the QyPredict® algorithm, are promising tools to improve the selection of patient populations more likely to clinically progress during the timeframe of an AD clinical trial.

Study objectives

1. To evaluate the prognostic value of QyPredict[®] in all-comer mild cognitive impairment (MCI) populations as well as amyloid-positive (A β +) and APOE- ϵ 4 + sub-populations.

2. To evaluate the benefit of using QyPredict® to refine patient selection in terms of clinical trial success probability in a simulation study.

INTRODUCTION OYPREDICT®

What is QyPredict®?

- QyPredict® is a prognostic model currently developed for use in mild cognitive impairment (MCI) populations
- QyPredict® takes different **baseline** inputs: structural MRI outputs from QyScore®, demographic and clinical data, genetic and biological disease markers

QYNAPSE

Inputs:

- Demographic data
- Clinical and Cognitive data at baseline
- QYSCORE® 3D T1 structural volumetric markers

Multiple feature engineering and machine learning models

Output:

Probability score

QYNAPSE

What information does QyPredict® provide?

- For each individual, QyPredict® generates a score (between 0-1) representing a probability of having a specific outcome (e.g. an increase of at least 0.5 points of CDR-SOB score over 24 months)
- Allows for a personalized medicine approach by providing prediction on an individual patient level

Inputs:

- Demographic data
- Clinical and Cognitive data at baseline
- QYSCORE® 3D T1 structural volumetric markers

QYPREDICT®

Multiple feature engineering and machine learning models

Output:

Probability score (between 0-1) of CDR-SOB increasing within 24 months

Methods

Participants

Study participants were from **ADNI** with the following inclusion criteria:

- Age (55 85 years of age)
- MCI diagnosis
- MMSE between 24 and 30
- CDR = 0.5 at baseline
- Available amyloid status

Methods

Analyses

- A QyPredict® probability of decline was calculated for each of the 519 individuals modeled **over 24 months.**
- The performance of QyPredict® to accurately model real decline in CDR-SOB was evaluated at several increasing probability of decline cut-offs of 0.1, 0.2, 0.3, 0.4 and 0.5.
- For the total cohort, Amyloid+ and APOE-£4+ populations, the mean, standard deviation and Cohen's d for CDR-SOB change was calculated.
- Sensitivity, specificity, positive predictive value (PPV) and power calculations were computed to assess predictive performance.
- Finally, a clinical trial simulation was run to further investigate the utility of QyPredict® to improve the probability of clinical trial success.

Results

Demographics and CDR-SOB for the Full and filtered QyPredict® Cohorts

- Age increased with increasing QyPredict® threshold (p < 0.001 only for QyPredict® > 0.4)
- Baseline CDR-SOB increases but it is only significant when comparing the full and QyPredict® > 0.5 groups
- Change in CDR-SOB significantly increased based on the baseline QyPredict® values
- Proportion of Amyloid positive individuals increases above QyPredict® of 0.2

Cohort	N	Age	Sex (M/F)	CDR-SOB at baseline	CDR-SOB at 12 months	CDR-SOB at 24 months	Amyloid positive N (% total)	APOE-ε4 status (+/-) (%+)
Full cohort	519	71.8 (± 7.1)	303 / 216	1.5 (±0.90)	1.8 (± 1.38)	2.3 (± 2.11)	319 (61%)	263 / 256 (51%)
QyPredict® > 0.1	467	72.2 (± 7.0)	287 / 180	1.6 (±0.91)	1.9 (± 1.39)	2.5 (± 2.14)	300 (64%)	243 / 224 (52%)
QyPredict® > 0.2	418	72.6 (± 7.0)	266 / 152	1.6 (±0.90)	2.0 (±1.4) *	2.7 (±2.17) *	283 (67%) *	223 / 195 (53%)
QyPredict® > 0.3	353	73.2 (± 6.8)	224 / 129	1.6 (±0.93)	2.2 (± 1.41) *	3.0 (± 2.21) *	257 (72%) *	195 / 158 (55%)
QyPredict® > 0.4	313	73.4 (±6.6) *	199 / 114	1.7 (±0.95)	2.3 (±1.42) *	3.1 (±2.25) *	234 (74%) *	179 / 134 (57%)
QyPredict® > 0.5	251	73.9 (± 6.6) *	154 / 97	1.7 (±0.97) *	2.4 (± 1.44) *	3.4 (± 2.30) *	197 (78%) *	148 / 103 (59%) 9

Results: Stable versus Decliners

- QYNAPSE

 QYPREDICT®
- QyPredict® performed well at predicting those that would decline and those that would remain stable over 24 months in all Cohorts.
- Stable defined as a QyPredict® score < 0.5 and Decliner as QyPredict® > 0.5

251 subjects were predicted to decline. 190 actually declined, for a PPV* of 0.76, sensitivity of 0.7 and specificity of 0.75

Sample size	Un-Enriched Cohort	Enriched Cohort
30% treatment effect	304	102
50% treatment effect	111	38

197 subjects were predicted to decline.164 actually declined for a PPV of 0.83, sensitivity of 0.77 and specificity of 0.70

Sample size	Un-Enriched Cohort	Enriched Cohort
30% treatment effect	144	77
50% treatment effect	53	29

148 subjects were predicted to decline.122 actually declined for a PPV of 0.82,sensitivity of 0.75 and specificity of 0.74

Sample size	Un-Enriched	Enriched Cohort	
Sample Size	Cohort	Enneried Conort	
30% treatment effect	184	79	
50% treatment effect	68	30	

QYPREDICT® and Clinical Trials Simulation

QYNAPSE

QYPREDICT®

incorporated into the inclusion criteria at screening

Repeated for 1000 simulations

Clinical Trial Simulation Results

QYNAPSE

QYPREDICT® incorporated into the inclusion criteria at screening

n = total patients screened to reach 1000 patients enrolment

SUMMARY AND CONCLUSIONS

- Using baseline neuroimaging and demographic information, QYPREDICT® was able to accurately model the likelihood an individual patient would decline over 24 months in allcomers, Amyloid positive and APOE positive populations, based on change in CDR-SOB.
- Sensitivity, specificity and positive predictive value where high across the different populations (all > 0.70).
- Enriching using QYPREDICT® substantially reduced sample sizes required to detect a treatment effect.

SUMMARY AND CONCLUSIONS

- QYPREDICT® shows promise in improving trial selection towards decliners for increased trial success probability with a single upfront screening cost.
- The use of QYPREDICT® score as part of the inclusion criteria in our clinical trials simulation **significantly** improved the probability of trial success, while increasing screening failure rates due to excluding those who would be less likely to clinically progress.
- These results support the promising potential to improve design and power of AD clinical trials, and the likelihood of detecting positive treatment effects and achieving trial success.

QYNAPSE

THANK YOU FOR YOUR ATTENTION AND I WELCOME ANY QUESTIONS

FOR MORE INFORMATION:

Jorge Samper-Gonzalez
Data Scientist
Qynapse

Email: <u>jsamper@gynapse.com</u>

PEACE OF MIND