PREVALENCE AND CLINICAL ASSOCIATIONS OF ATROPHY SUBTYPES IN MCI USING QYSCORE® AND THE MEMENTO MEMORY CLINIC POPULATION

A.J. Schwarz², E. Cavedo¹, E. Gordon¹, J. Samper-Gonzales1, C. Longo dos Santos¹ and the MEMENTO Study Group

¹Qynapse, Paris, France ²Qynapse, Boston, MA

BACKGROUND

Three patterns of brain atrophy have been consistently identified in cases of Alzheimer's dementia¹

•limbic-predominant (LP): atrophy of the hippocampus but relatively spared neocortex

•hippocampal sparing (HS): atrophy in the cortex (especially lateral temporal and parietal lobes) but sparing of the hippocampus

•typical/diffuse (TD): atrophy in both hippocampus and cortex

A recent study extended this concept to a less severely affected memory clinic population (the MEMENTO study) 2,3 .

OBJECTIVES

To assess atrophy subtypes in the MEMENTO population using a volumetric quantitative approach based on the automated output of QyScore[®] an FDA-approved and CE-marked image analysis software⁴.

METHODS

IMAGING DATA

- MMSE=27.8±2.0, CDR-SB=0.6±0.7)
- N=678 (41%) had amyloid status from CSF or PET, of which 193 (28%) were amyloid-positive (A+)
- cortex and hippocampus volumes referenced to 1290 cognitively normal individuals using **QyScore® v1.10**
- Volumes were corrected by **intracranial volume** (ICV).
- QyScore[®] analytics with built-in normative database enables a definition of subtypes based on regional atrophy markers from individual scans:

References:

email: egordon@qynapse.com

Schematic illustration of brain atrophy subtypes (from ref. [1])

• N=1642 3DT1 images from mild cognitive impairment (MCI) participants from the MEMENTO cohort were included (Age=71±9,

• Neurodegeneration-positive (N+) atrophy subtypes (LP, HS or TD) were defined on individual scans using z-scores from parietal

		N-	Limbic Predominant		Typical / Diffuse	ŀ	Hippocampal Sparing
	QyScore® Parietal Cortex	z ≥ -1.64	z ≥ -1.64		z < -1.64		z < -1.64
	QyScore® Hippocampus	z ≥ -1.64	z < -1.64		z < -1.64		z ≥ -1.64
42 64 86				•			

[1] Ferriera et al. (2020) Neurology 94:436; [2] Dufouil et al. (2017) Alz & Dem 17(4):651; [4] Cavedo et al. (2022) Eur Radiol 32(5):2949; [5] Charil et al. (2018) AAIC [6] Aisen et al. (2010) Alz & Dem 6(3):239; [7] Gordon et al (2022) Eur Radiol 32(5):2949; [5] Charil et al. (2021) AIz & Dem 17(4):651; [4] Cavedo et al. (2022) Eur Radiol 32(5):2949; [5] Charil et al. (2021) AIz & Dem 6(3):239; [7] Gordon et al (2022) AIZ & Dem 17(4):651; [4] Cavedo et al. (2021) AIz & Dem 17(4):651; [4] Cavedo et al. (2022) Eur Radiol 32(5):2949; [5] Charil et al. (2021) AIZ & Dem 17(4):651; [4] Cavedo et al. (2022) Eur Radiol 32(5):2949; [5] Charil et al. (2022) Eur Radiol 32(5):2949; [5] Charil et al. (2021) AIZ & Dem 17(4):651; [4] Cavedo et al. (2022) Eur Radiol 32(5):2949; [5] Charil et al. (2022) Eur

have prognostic value as the severity of cognitive and functional decline.⁷

This is particularly important given the increasing evidence that atrophy subtypes in MCI