AN AUTOMATED PIPELINE FOR CENTILOID QUANTIFICATION OF AMYLOID-B USING MULTIPLE 11C-PIB-PET AND 18F-PET TRACERS Elizabeth Gordon¹, Mathilde Borrot¹, Ayoub Gueddou¹, Luca M. Villa¹, Thomas Jubault¹, Nicolas Guizard¹ ¹Qynapse, 2-10 rue d'Oradour-sur-Glane, 75015 Paris, France Email egordon@qynapse.com ## BACKGROUND - Quantitative measures of amyloid- β (A β) pathology using positron emission tomography (PET) imaging are sensitive to identify pathological changes, even at the earliest stages of Alzheimer's disease (AD) - However, the quantification values vary considerably between tracers and acquisitions, making comparisons across studies and clinical trials findings problematic - The Centiloid scale aims to standardize these in vivo amyloid quantifications to a 100-point scale, where an average value of zero signifies high certainty of amyloid negativity and 100 identifies average typical AD A β -pathology load¹ - A fully automated Centiloid quantification pipeline supporting multiple available amyloid-PET tracers would be valuable for improving the efficacy and comparability of PET-based analyses across study site #### OBJECTIVES • To develop and validate Qyscore®'s single fully automated Centiloid quantification pipeline for multiple amyloid PET tracers. ## METHODS - QyScore®'s fully automated pipeline was validated on 11 C-PiB-PET and 18 F-PET images from the Centiloid project (https://www.gaain.org/centiloid-project): 34 young controls [age=31.5 \pm 6.3 years] and 45 AD patients (age=67.5 \pm 10.5 years; CDR= 0.5–1) - ¹⁸F tracers included Florbetapir² (FBP, n = 46), Forbetaben³ (FBB, n = 35), Flutemetamol⁴ (FTM, n = 74) and NAV4694⁵ (NAV, n = 55). - PET/MR image pairs were both coregistered and normalized in the MNI template space (Figure 1). - The fully automated segmentation from QyScore®, a CE-marked and FDA-cleared neuroimaging medical device, parcellated the regional masks of the grey matter tissue (target) and of the cerebellum (reference) region (Figure 1)¹ **Figure 1.** Example of QyScore®'s grey matter composite (target) and cerebellum (reference) masks overlayed onto the MNI transformed PET imaging - The standardized uptake value ratio (SUVr) was computed as the ratio of the mean signal in both regions. Correlations of (¹¹C-PiB and ¹ጾF) SUVr values with published SUVr data were computed^{[2-5].} - Further, correlations between ^{18}F SUVr and paired ^{11}C -PiB SUVr were computed. Correlation coefficients (R^2) > 0.7 were required to consider the Centiloid calibration valid. - Equations for converting F18-SUVr values to CL were then derived. ## RESULTS QyScore®'s fully automated quantitative pipeline produced SUVr values well within the bounds defined by the Centiloid method - SUVr_AD-100 = 2.08 + /- 0.2 and - $SUVr_YC-0 = 1.01 + /- 0.05$, - $R^2 = 0.99$; slope = 1.00; intercept = -0.44). QyScore®'s ¹¹C-PiB SUVr correlation coefficients with published values were above 0.99. Correlation coefficients of QyScore®'s ¹¹C-PiB SUVr and ¹⁸F tracer SUVr's were : - 0.91 for Florbetapir, - 0.95 for Forbetaben, - 0.96 for Flutemetamol, - 0.99 for NAV4694 (Figure 2.) **Figure 2.** Linear regression comparing QyScore®'s automated SUVr for ¹¹C-PiB and the ¹⁸F tracers Equations for converting QyScore®'s automated SUVr to Centiloid were (Figure 3) Florbetapir: CL = **177.79** * FBP_SUVr - 183.56 Forbetaben: CL = **153.08** * FBB_SUVr - 152.93 Flutemetamol: CL = **122.39** * FTM_SUVr - 120.97 NAV4694: $CL = 90.20 * NAV_SUVr - 91.61$ **References:** ¹Klunk WE et al. 2015; ²Navitsky M et al. 2018; ³Rowe CC et al. 2017; ⁴Battle MR et al. 2018; ⁵Rowe CC et al. 2016 **Figure 3.** QyScore®'s automated SUVr and corresponding Centiloid values for each of the four ¹⁸F tracers ## CONCLUSIONS We demonstrate the feasibility and reliability of Qyscore®'s fully automated amyloid PET pipeline for multiple amyloid-PET compounds (PiB and ¹⁸F) and transformation to standardized Centiloid quantifications, suitable for implementation in clinical trials.