VALIDATION OF QYSCORE® WHITE MATTER HYPERINTENSITY (WMH) U-NET SEGMENTATION ALGORITHM AGAINST EXPERT MANUAL CONSENSUS AND COMPARISON WITH STATE-OF-THE-ART METHODS

Elizabeth Gordon¹, Philippe Tran¹, Luca M. Villa¹, Mathilde Borrot¹, Ayoub Gueddou¹, Nicolas Guizard¹.

¹Qynapse, 2-10 rue d'Oradour-sur-Glane, 75015 Paris, France

Email: egordon@qynapse.com

ALZHEIMER'S CLASSOCIATION Alzheimer's Association International Conference

QYNAPSE

BACKGROUND

Detection and quantification of White Matter Hyperintensities (WMH) are clinically important across multiple CNS disorders and neurodegenerative dementias. However, the labor-intensive nature of manual segmentation limits widespread clinical application. Validation of accurate automated methods for segmenting WMH are urgently needed to overcome this unmet clinical need.

OBJECTIVES

To validate QyScore®'s fully-automated WMH quantification pipeline against ground-truth expert manual consensus gold-standard, and directly compare performance accuracy against six widely used packages.

METHODS

The validation cohort consisted of 129 individuals who had undergone T1-weighted and T2-FLAIR MR imaging.

• To ensure robust results, *different scanners* (30 GE, 26 Philips, 73 Siemens) and *patient populations* were included (Table 1A).

The <u>WMH_U-Net algorithm</u> included in QyScore®, an FDA-cleared and CE-marked neuroimaging platform, automatically segmented WMH in each image set, using a convolutional neural network approach.

These were compared to the <u>gold-standard consensus</u> of three expert neuroradiologist manual segmentations to derive key <u>performance metrics</u>:

• spatial overlap (Dice Similarity Coefficient (DSC) and F1 scores) and volume comparisons (intra-class correlation coefficient (ICC) and absolute volume error (AVE, ml).

A second investigation performed a *direct comparison* of QyScore® WMH_U-Net with six state-of-the-art supervised and unsupervised segmentation methods (*LST-LGA* and *LPA*, *Lesion-TOADS*, *lesionBrain*, *BIANCA* and *nicMSlesions*) on a dedicated MS dataset (Table 1B) with default and optimized settings where available. DSC, F1, ICC and AVE were compared across all methods.

Table 1A – Full validation cohort (n=129) demographics, split by lesion load and associated DSC and AVE performance metrics for the validation of QyScore® WMH_U-NET automated WMH segmentation algorithm against the consensus of three expert neuroradiologist manual segmentation

Algorithm	Lesion Load (based on expert manual consensus)	N of subjects	Age mean (std) [range]	Clinical Status	Sex (M – F)	Type 2D – 3D	DSC Results mean (std)	AVE Results mean (std)
QyScore [®] WMH_U-Net	WMH Low < 5 mL	29	58.13 (17.93) [26 – 90]	10 AD, 12 MS, 7 HC	12 – 17	18 – 11	0.36 (0.17)	0.76 (0.68)
QyScore [®] WMH_U-Net	WMH Medium 5 – 15 mL	23	59.85 (18.97) [29 – 84]	9 AD, 12 MS, 2 HC	11 – 12	14 – 9	0.68 (0.10)	3.29 (2.94)
QyScore [®] WMH_U-Net	WMH High 15 – 30 mL	46	63.41 (19.57) [27 — 91]	17 AD, 5 FTD, 13 MS, 5 HC, 6 N/A	24 – 22	23 – 23	0.75 (0.08)	4.38 (3.92)
QyScore [®] WMH_U-Net	WMH Very high > 30 mL	31	76.39 (12.13) [39 – 91]	13 AD, 8 MS, 6 HC, 4 NA	13 – 18	15 – 16	0.79 (0.05)	7.99 (5.46)
QyScore [®] WMH_U-Net	WMH Full sample	129	62.95 (19.35) [27 – 91]	49 AD, 5 FTD, 45 MS, 20 HC, 10 N/A	60 – 69	70 – 59	0.66 (0.20)	4.21 (4.49)

Table 1B – MS cohort used for the direct comparison of QyScore® WMH_U-NET algorithm with six state-of-the-art automated WMH segmentation						
algorithms, with a training and testing split for those where optimization training was possible.						

algoritimis) with a train	is) with a training and testing spire for those where optimization training was possible.					
MS database for algorithm comparison	N of subjects	Clinical status	Age range (mean +- std) (range)	Sex (M - F)		
Global	30	24 RRMS, 2 SPMS, 1 PPMS, 2 CIS, 1 unspecified	39.27 +- 10.12 (25 - 64)	7 – 23		
Training	10	9 RRMS, 1 SPMS	42.3 +- 11.13 (30 - 64)	1 - 9		
Testing	20	15 RRMS, 1 SPMS, 1 PPMS, 2 CIS, 1	37.75 +- 9.51 (25 – 60)	6 – 14		

HC = Healthy Controls; **AD** = Alzheimer's Disease; **FTD** = Frontotemporal Dementia; **MS** = Multiple Sclerosis; **N/A** – Clinical status not available; **RRMS** = relapsing-remitting multiple sclerosis; **SPMS** = secondary progressive MS; **PPMS** = primary progressive MS; **CIS** = clinically isolated syndrome

RESULTS

QyScore® WMH_U-Net demonstrated good volume and spatial overlap (average DSC=0.66±0.2), especially with larger WMH load (15-30ml: DSC=0.75±0.07) across the full validation cohort. Compared to available state-of-the-art algorithms, QyScore® WMH_U-Net outperformed both unsupervised and supervised methods (default settings), producing segmentations most closely matching the consensus manual expert gold-standard (<u>Figure 1B, Table 2A</u>).

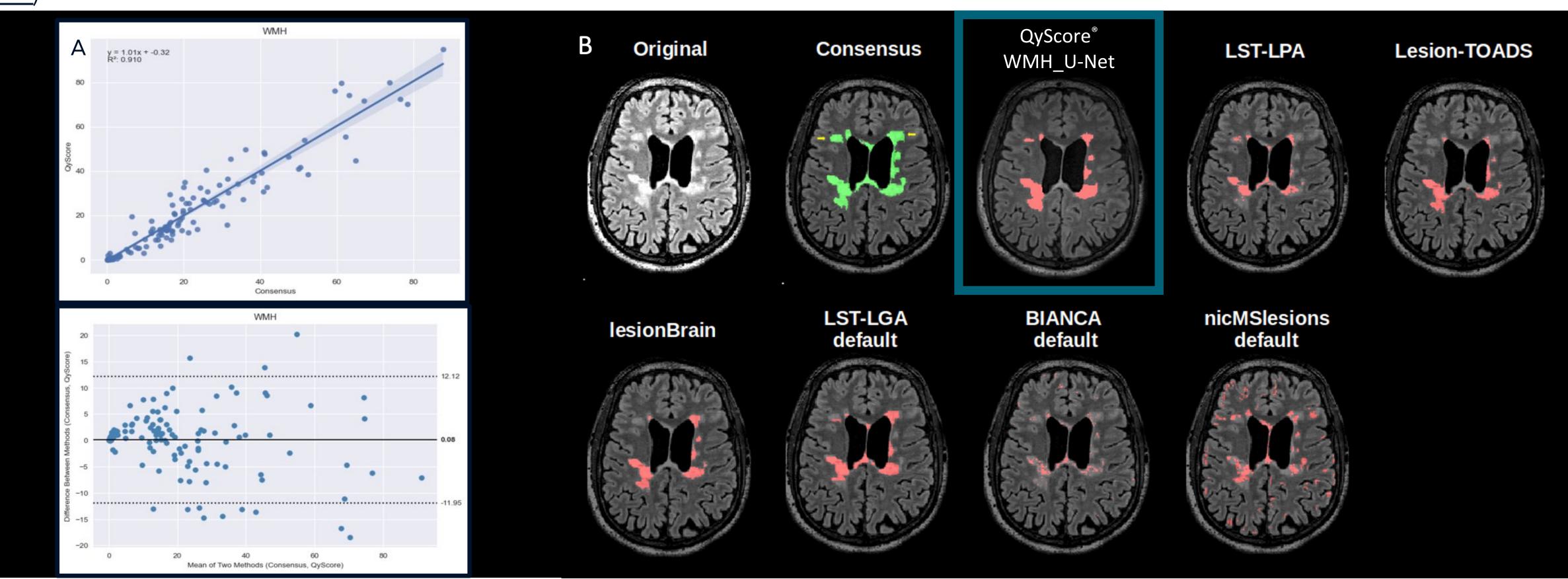


Figure 1A – Linear Regression and Bland-Altman plots demonstrating strong concordance between QyScore® WMH_U-NET and the export manual gold-standard consensus.

Figure 1B – Representative slice demonstrating automated segmentation performance against the expert consensus for QyScore® WMH_U-NET and the six alternative state-of-the-art algorithms.

QyScore® WMH_U-Net demonstrated the highest volume agreement (ICC=0.97) and DSC (0.57±0.24) and lowest AVE (5.33±4.04mL) compared with all 6 segmentation methods (<u>Table 2A and 2B</u>). Optimizing and/or retraining LST-LGA, BIANCA and nicMSlesions on a subset of the MS cohort (<u>Table 2B</u>), improved their performances; however, QyScore® WMH_U-Net remained comparable with the optimized nicMSlesions, and performed better than the optimized LST-LGA and BIANCA. Friedman test (ANOVA) revealed significantly better spatial (DSC: $p=5.90 \times 10^{-21}$) and volumetric agreement (AVE: $p=3.61 \times 10^{-6}$) between QyScore® WMH_U-Net and the other methods (default settings: <u>Table 2A</u>). Wilcoxon signed-rank post-hoc analysis (Bonferroni corrected: p<0.0071 for all default and optimized method comparisons) demonstrated QyScore® WMH_U-Net significantly outperformed all methods across spatial and volumetric agreement with an expert manual consensus gold-standard comparator.

MS set (n=30).						
Segmentation Method	Lesion volume	AVE	Dice	F1-score	ICC	
Expert Manual Consensus	17.39 ± 16.13 (0.34 – 52.45)	N/A	N/A	N/A	N/A	
QyScore® WMH_U-Net	12.05 ± 12.97 (0.15 – 41.78)	5.33 ± 4.04 (0.06 - 13.79)	0.57 ± 0.24 (0.08 – 0.86)	0.43 ± 0.15 (0 - 0.63)	0.95	
LST-LGA default	8.77 ± 10.06 (0.05 – 36.16)	8.62 ± 7.75 (0.28 – 32.19); <i>p=3.79E-06*</i>	0.45 ± 0.24 (0.03 – 0.81); <i>p=2.05E-07*</i>	0.21 ± 0.17 (0.00 - 0.54)	0.83	
LST-LPA	5.37 ± 6.37 (0.08 – 23.26)	12.02 ± 10.76 (0.26 – 36.68); <i>p=5.26E-06</i> *	0.34 ± 0.19 (0.04 – 0.67); <i>p</i> =9. <i>31E</i> - <i>0</i> 9*	0.16 ± 0.13 (0.00 – 0.45)	0.61	
lesionBrain	7.85 ± 9.52 (0.01 – 32.72)	9.54 ± 7.83 (0.33 – 25.33); <i>p=3.73E-09</i> *	0.41 ± 0.24 (0.00 – 0.76); <i>p=3.73E-09</i> *	0.19 ± 0.13 (0.00 – 0.59)	0.83	
Lesion-TOADS	15.27 ± 8.31 (3.46 – 36.85)	9.20 ± 6.82 (0.06 – 25.31); <i>p=4.66E-03</i> *	0.41 ± 0.25 (0.02 – 0.73); <i>p=1.86E-09</i> *	0.23 ± 0.09 (0.09 - 0.40)	0.61	
BIANCA default	2.16 ± 1.62 (0.31 – 36.85)	14.56 ± 14.14 (0.05 – 45.17); <i>p=3.27E-02*</i>	0.24 ± 0.09 (0.07 – 0.42); <i>p=3.54E-08*</i>	0.11 ± 0.09 (0.00 - 0.36)	0.25	
nicMSlesions default	36.41 ± 24.87 (13.89 – 115.71)	19.89 ± 17.83 (0.32 – 74.97): <i>p</i> =1.60 <i>E</i> -05*	0.18 ± 0.13 (0.00 - 0.41); $p=1.86E-09*$	0.07 ± 0.05 (0.00 - 0.18)	0.60	

Segmentation Method	Lesion volume	AVE	Dice	F1-score	ICC
Expert Manual Consensus	17.53 ± 17.09 (0.34 – 52.45)	N/A	N/A	N/A	N/A
QyScore [®] WMH_U-Net	12.67 ± 13.73 (0.02 – 41.79)	3.57 ± 3.52 (0.33 – 13.9)	0.56 ± 0.26 (0.09 – 0.86)	0.42 ± 0.17 (0 – 0.63)	0.97
LST-LGA default	8.60 ± 10.75 (0.02 – 33.82)	8.93 ± 7.39 (0.30 – 20.19) p<0.0071	0.41 ± 0.28 (0.00 – 0.78); <i>p</i> <0.0071	0.16 ± 0.15 (0.00 – 0.52)	0.86
LST-LGA optimized	15.10 ± 15.23 (1.04 – 46.81)	4.28 ± 3.66 (0.08 – 11.54); <i>p</i> =0.388**	0.51 ± 0.26 (0.06 – 0.85); p<0.0071**	0.20 ± 0.14 (0.03 – 0.51)	0.95
BIANCA default	2.68 ± 2.22 (0.39 – 7.28)	14.88 ± 15.11 (0.05 – 45.17) p<0.0071	0.22 ± 0.08 (0.07 – 0.36); <i>p</i> <0.0071	0.09 ± 0.08 $(0.00 - 0.32)$	0.23
BIANCA optimized	10.90 ± 7.92 (2.88 – 31.39)	8.54 ± 8.55 (0.78 – 31.73); <i>p</i> <0.0071**	0.39 ± 0.18 (0.07 – 0.66); p<0.0071**	0.23 ± 0.11 (0.07 – 0.42)	0.71
nicMSlesions default	39.79 ± 29.73 (13.89 – 115.71)	22.60 ± 20.93 (0.58 – 74.97) <i>p</i> <0.0071	0.17 ± 0.14 (0.00 – 0.41); p<0.0071	0.06 ± 0.05 (0.00 – 0.15)	0.61
nicMSlesions optimized	14.33 ± 13.09 (0.00 – 36.90)	4.65 ± 6.78 (0.05 – 27.97); <i>p</i> =0.202**	0.63 ± 0.23 (0.00 – 0.85), <i>p</i> =0.083**	0.56 ± 0.21 (0.00 – 0.86)	0.88

following optimization training. Six default and three possible optimized results presented.

* Wilcoxon signed-rank tests comparing the DSC and AVE for each of the six state-of-the-art methods (default settings) with QyScore® WMH_U-Net segmentations in the full cohort (n=30). ** Wilcoxon signed-rank tests comparing the DSC and AVE for each of the three state-of-the-art methods that allowed retraining and optimization with QyScore® WMH_U-Net segmentations.

CONCLUSIONS

QyScore® WMH_U-Net automated WMH segmentations significantly outperformed 6 state-of-the-art widely used WMH segmentation automated tools across multiple spatial and volume performance metrics. It produced fast robust WMH segmentations accurate varied cohort from across a multiple scanners and patient groups, supporting its widespread application for clinical routine practice.